
Abstract
Many important protocols, such as Q.2931 or any

protocol based on the ASN.1 Basic Encoding Rules, are
transmitted using tagged message formats, in which a
message can be considered as a sequence of interleaved
tag and data fields, where tag fields define the meaning of
subsequent fields. These messages are computationally
expensive to decode, partly because decoding each data
field requires testing one or more tag fields. Evidence
suggests that in some applications, although the potential
space of message encodings may be very large, only a
small number of message layouts are seen frequently, and
thus some of the work required in decoding can be
amortized over many messages. This paper analyzes the
use of run-time code generation to generate optimized
decoding instruction sequences for received messages
matching previously observed layouts, and describes a
prototype system that applies the techniques to decoding
the Q.2931 and ASN.1 BER protocols. In the average case,
substantial performance gains are seen.

Key Words: Encoding Rules; Protocol
Implementation; Q.2931; ASN.1; Runtime Code
Generation.

1. Introduction

A number of important network protocols, such as
Q.2931 [26] (a standard protocol used to request
connections in ATM networks,) or any protocol using
ASN.1’s Basic Encoding Rules (BER) [27,28] use tagged
message formats. An encoded message consists of tag
fields interleaved with data fields. The tag fields define the
size, position, format, and meaning of subsequent fields.

Before software can take action based on these
messages, they must be unmarshalled into a format
convenient for further processing, which will depend on
the implementation language. This is called presentation
layer processing.

It has been widely recognized that presentation layer
processing can be a significant bottleneck in high-

performance systems. Performance of both the upward
direction (decoding or unmarshalling) and the downward
direction (encoding or marshalling) are important topics;
however this paper addresses only the upward direction.

Decoding tagged messages is time-consuming. For
each field, the software must make one or more tests based
on the tags, and dynamically choose different parts of the
decoding algorithm for each field. The cost of testing and
choosing greatly dominates the cost of simply
transforming the values from the source format to the
convenient internal format.

Sample [10] showed that with some effort, an ASN.1
BER decoder can be made as efficient as a naive XDR
implementation; however, this performance is still much
slower than it could be. A highly optimized decoder
presented by Lin [7] showed that the best achievable
performance for decoding any ASN.1 BER message is
fairly slow: 37 to 56 SPARC instructions for each integer-
valued field. Lin used a hand-optimized decoder, with
most error checks omitted, and placed some restrictions on
the values allowable in tag fields. Lin does not give
timings for these instruction sequences, but as the decoder
contains mostly load-test-branch sequences, most
processors will require more cycles per instruction (CPI)
than for “average” code [23]. Analysis of ISODE [25], a
widely used presentation layer building toolkit, shows it to
be about 25 times slower than Lin’s optimal results.

Significant efforts [11,12,13,14,15,16,17] have gone
into in developing “lightweight” transfer syntaxes with
similar functionality to the BER, to reduce the cost of
encoding and decoding. Mitra [18] gives an overview of
various alternative encoding rules. Proposals for parallel
processing [19] and hardware-based [20] decoding have
also been given. It is hoped that the techniques presented
here can be applied to achieve good performance from
standardized transfer syntaxes, without requiring special
or expensive hardware.

This paper is organized as follows. Section 2
describes the steps required for decoding in general.

Fast Decoding of Tagged Message Formats

Trevor Blackwell
Division of Applied Sciences

Harvard University
Cambridge, MA 02138
tlb@eecs.harvard.edu

To appear in IEEE Infocom ‘96

Section 3 discusses how the techniques of run-time code
generation (RTCG) and pattern matching can be applied to
the task of fast message decoding. Section 4 describes the
implementation of a prototype RTCG-based decoder.
Section 5 describes related work. Sections 6 and 7 analyze
the performance trade-offs in using RTCG. Section 8
describes alternative implementation strategies. Section 9
concludes with some comments about the appropriateness
of RTCG for message decoding in various environments.

2. Message Decoding

The presentation layer has the task of converting
messages from a form convenient for processing (i.e.
language-specific data structures) to a form that can be
transmitted over a network, and back to a (generally
different) convenient data structures on the receiving end.
A message consists of a sequence of records, each of
which can be either a primitive type, such as an integer or
character string, or a composite type which contains other
records. Records can be preceded by a type tag; in ASN.1
BER every record is tagged, whereas in Q.2931 a single
tag can identify a structure containing several elements.

The encoding rules studied here are defined such that
messages can be decoded a byte at a time, from beginning
to end. Decoders are usually written as recursive descent
parsers, such that the programmer (usually aided by some
automated tools) defines a function for every record type
that unmarshalls the data from the transmitted format to
the convenient internal representation. Thus, the decoder
spends much of its time examining tag fields and
dispatching to code to handle subsequent fields.

3. Exploiting Locality in Message Layout

For the purposes of this paper, we will say that two
messages have the same layout when all the data fields are
of the same size and in the same place in the received
message. This implies that all the tag fields are identical. A
stream of messages where relatively few distinct layouts
occur is said to have good message layout locality.

The number of possible message layouts is very large
for any non-trivial protocol. Even among messages having
the same meaning to the receiver, the number of possible
layouts is exponentially large, for at least the following
reasons:

• Optional fields often have defaults. Thus, the pres-
ence of a field with the same values as the default
does not change the meaning

• Fields can often be marshalled in any order
• There may be “extended” fields, ignored by the

particular receiver.

Despite the large space of possible encodings, many
network entities tend to produce only a few distinct
message layouts under normal operation, although the
common set of encodings is hard to predict in advance,
and may change over long periods of time.

For a given message layout, a decoding sequence can
be generated that transforms a message having that layout
directly into the convenient internal format. The decoding
sequence is a piece of straight-line executable code
consisting of loads, simple data transformations, and
stores.

The optimized decoding sequence can be much faster
than a general decoding algorithm. First, all tests and
branches are eliminated. Essentially all pointer arithmetic,
a significant cost in conventional decoders, is eliminated.
Because the alignment with respect to word boundaries of
all elements in the message is known, individual byte
loads and stores can be merged into words loads and
stores. Because the code is straight-line, and all memory
reference dependencies are known, the code can be
multiply issued on superscalar processors.

By generating optimized decoding instruction
sequences for each message layout seen by the decoder, a
substantial performance gain can be achieved. The process
is as follows. When the system receives a message, it is
compared against a set of templates generated for
previously received messages. If it does not match, then
the message is decoded from scratch, and a new template
and optimized decoding sequence are generated. If a
message does match against a template, the optimized
decoding sequence is used, and the message is decoded
very quickly.

As will be seen in section 6, the decoding time is
reduced by a factor of 4 to 5 over Lin’s results, and by a
factor of 70 to 100 over some available decoding
implementations.

4. Prototype Message Decoder

Each stage in the processing of messages is now
described in detail. There are many ways in which each
stage could possibly be done; however this discussion will
focus on the design options chosen for our prototype.
Section 8 describes some other organizations for the
decoding system, which may be more convenient for
particular applications.

4.1. Decoding from Scratch

When a message is received with an unfamiliar
layout, it is parsed according to the rules of the encoding
format, using a recursive descent parser as described in
section 2. Methods of generating such parsers
automatically from abstract specifications of message

formats are known, and toolkits are available [25]. The
prototype provides a toolkit for parsing messages, which
provides an API in the spirit of C’s scanf [33]. A format
string describes the meaning of each of a range of bits in
the input.

An example will be helpful. Figure 1 shows a typical
piece from which a parser is constructed. The top shows
part of a message format in Q.2931 signalling defined in
the UNI 3.0 standard [26]. The format string has two parts,
separated by a colon. The first declares the types of fields
that are being decoded. The “ii” indicates that there are
two big-endian int types. The “^” is a failure point - if
the match fails at some later point in the format string, the
parser will back up to the most recent failure point. If no
failure point is given, then it issues an error. Each “1” or
“0” in the format string matches a one or zero bit in the
message. Each “a” indicates a bit that is part of the first
field; each “b” indicates a bit that is part of the second
field, and so on.

While this programming style does not produce very
fast code, it is very convenient. Our decoder for the
complete Q.2931 message syntax is 300 lines and is nearly
as easy to read as the standard itself.

While the parser is processing the message, it records
the values of tag fields which were used to make a
decision, and the value of all fields in the decoded
representation as a function of bits in the received
message. This information is sufficient to build both a
template to recognize future messages with the same
layout and an optimized decoding sequence.

4.2. Memory Allocation

The decoded representation is a hierarchical data
structure, such that optional fields are accessed through a
pointer which is nil if the field is not included. This

requires dynamic memory allocation which is a substantial
overhead for other decoding systems (this is quantified in
section 6).

In the RTCG system, memory allocation need only be
done when decoding a message from scratch. The
prototype system allocates a single, extensible buffer for
the entire decoded representation. Allocation is done
simply by extending the buffer. Thus, the output of the
optimized decoder is to a contiguous region of memory,
and the optimized decoding sequence can refer to words in
the decoded representation as an offset relative to the start
of the buffer. Using a contiguous buffer may also make
more efficient use of the processor’s data cache than if
each part of the data structure were allocated
independently.

4.3. Code Generation

The intermediate representation of the decoding
sequence is a set of expressions, one for each word in the
output buffer. Expressions are constructed from a subset of
the operators in the C language.

The expressions are built incrementally by the from-
scratch message parsing API. The next step is to generate
executable machine code from the expressions.

The prototype compiler generates executable code for
the DEC Alpha. It is surprisingly compact: including the
optimizer, it consists of about 2000 lines of C++, two
orders of magnitude less than Gcc 2.7.2. It can be much
simpler than a general-purpose compiler because it
generates only straight-line code, and thus does not have
to implement control flow analysis or any global
optimizations. It also supports only a single integer data
type. It does register allocation by graph colouring, and
spills variables to the stack when necessary. Its simple
instruction scheduling is effective, as large amounts of
instruction-level parallelism are easily found in most
decoding sequences. In addition to doing common
subexpression elimination and constant propagation, the
optimizer knows 25 specific optimizations, which were
chosen ad-hoc by looking at the output code for several
cases, and adding optimizations until all the obvious
inefficiencies disappeared. Interestingly, the code
generated by the prototype is about 35% faster than gcc
-O2 for the messages we tested, because:

• it knows that the input and output buffers to not
overlap - thus it can eliminate multiple loads from
the same address even if there is an intervening store,
and it can move loads and stores past each other for
improved scheduling. C compilers must make much
more conservative assumptions about pointer
aliasing.

• it knows the alignment of input and output regions,
so it can merge multiple bitfield loads into a single

FIGURE 1. Example of decoding part of a
Q.2931 message. The top shows part of the
header for a particular information element, as
given in the ATM Forum UNI Spec (v 3.0). []
The C code at the bottom matches the header in
the first octet, matches a 1 in the ext field in the
second octet, and copies the two fields in the
second octet into the ie structure.

parsef(“ii:^01011000 1aabbbbb”,
&ie->ie_codingStd,
&ie->ie_instruction);

Bits
8 7 6 5 4 3 2 1 Octets
0 1 0 1 1 0 0 0 1
1
ext

Coding
Standard

IE Instructions 2

word load, and multiple shifts. Especially on the
Alpha architecture, which has fast byte extraction
instructions but no byte load instructions, this is a
significant advantage. On a big-endian machine, it
would frequently be able to extract a multi-byte
integer with a single instruction.

4.4. Template Matching

Received messages must be quickly classified as to
which (if any) message layout template they match. The
prototype implementation builds a binary decision tree
where each node matches some bits in an incoming
message.

In the prototype, the decision tree is fully regenerated
whenever a new template is added. Techniques for
incrementally adding new paths to decision trees exist but
seemed unnecessary, as the cost of regenerating a
reasonably-sized tree was less than the cost of compiling a
optimized decoder. Simple techniques are used to achieve
a relatively balanced tree, although there are no guarantees
on the quality of the balancing.

Each non-leaf node in the decision tree is a decision
node of the following form:

where OFFSET, MASK, and BITS are constants defined in
the node, and msg is the received encoded message, as an
array of words. The leaf nodes of the tree are either an
optimized decoding sequence or an indication that the
message must be parsed from scratch.

Since every word in the message must be checked
against the template, classifying a k word message from
among a set of n takes operations when
the tree is well-balanced.

4.5. Integrated Layer Processing

Previous work [21] has pointed out several reasons
why conventional protocol layering, as exemplified by the
OSI reference model, does not lead directly to high
performance implementations. However, manual
integration of layer processing requires substantially
increased development, debugging, and maintenance
efforts.

A major function of layer processing that complicates
integration of layers is reassembly. Decoding messages
that are not contiguous in memory adds a significant extra
overhead, as each reference must be checked for overflow
into a new fragment. In the proposed system, it is feasible

to generate an optimized decoding algorithm to take its
source from multiple message fragments of known length.
In systems where fragmentation tends to be into units of a
few predictable sizes, including the fragmentation
boundaries as part of the definition of the layout should
not substantially increase the number of layouts that must
be handled.

5. Related Work

Run-Time Code Generation (RTCG) has a long and
checkered history - Keppel [2] gives an overview of some
of it’s many uses and provides many more references.

This particular application of RTCG described here is
that of specialization for efficiency - creating a special
purpose version of a general purpose algorithm that can do
the job much faster. This has been used, for instance, by
Pike [4] to optimize special cases of graphics block copy
operations, and in the Synthesis kernel [5] to optimize
common cases of data reads and writes to file descriptors.
SELF, a dynamically typed object-oriented language,
dynamically generates versions of methods optimized for
particular receiver types [6]. Dean [9] showed how to
extend SELF’s specialization to multi-methods - methods
whose implementation depends on the type of multiple
receiver classes.

RTCG is used in other applications such as the
Berkeley Packet Filter [3]. The BPF is not an example of
specialization for efficiency, but rather a way of specifying
a policy (which packets to capture) such that it can be
efficiently implemented in the kernel.

The 4.3 Reno implementation of NFS [22]
demonstrates the performance gains, as well as the
difficult implementation issues, of presentation layer
decoding directly from message buffers that have been
fragmented by a network.

Although the prototype does not use any third-party
toolkits to generate code, some are available [8] and might
ease porting to other architectures.

6. Analysis of Decoding Time

Experimental performance results are presented for
both Q.2931 and ASN.1 BER decoders. For the present
section, we will assume that only a small number of
message layouts (less than 100, say) are encountered; the
following section will discuss the potential for large
numbers of message layouts. Thus in this section we
measure the decoding time for previously processed
message layouts.

Two processing tasks are measured: decoding a
Q.2931 setup message, as generated by the QCC API
bundled with the SunATM network interface [29], and
decoding a 100-element structure in ASN.1 BER coding.

msg[OFFSET] & MASK == BITS

YESNO

k O nlog()+

The 119-byte Q.2931 message consists of the mandatory
elements for a setup message and one optional element:
adaptation layer parameters appropriate for AAL5. It
reflects a typical message used to request connections in
an IP networking environment. The 381-byte ASN.1 BER
message contains a sequence of 50 integers, alternating
with 50 booleans. The integers are chosen randomly to
have a even distribution of 1, 2, and 3 byte codings, and
the booleans are chosen uniformly at random.

Performance numbers are reported for the
DECStation 3000/400 [30], based on the DEC Alpha
21064 CPU, which supports limited dual issue (memory
operations can issue in parallel with integer ALU
operations under certain conditions). All code is compiled
with Gcc 2.7.0, using -O2 optimization. Both instruction
counts (obtained with Atom [32], or by single-stepping in
a debugger) and cycle counts (measured with the
processor’s per-process cycle counter) are reported. The
number of cycles per instruction (CPI) is also given. In
order to measure timings with warm caches, each
operation is run twice in succession using the same data,
and timings are measured for the second iteration. To
eliminate extraneous system activity, each experiment was
repeated several times, and the lowest timing numbers are
reported. Cycle counts for all decoders, especially the
more complex ones, must be considered to have a
significant error component due to the vagaries of
instruction and data cache conflicts [23]. It should be
noted that all numbers except Lin’s include several
overheads such as buffer management.

Table 1 compares the performance of the prototype
decoder Lin’s results, and with the ISODE decoder.
ISODE decodes messages in two phases. First, it converts
the BER-coded representation into a tree structure of
elements, one for each type-length-data tuple in the binary
representation. Then, code generated from an ASN.1
specification converts the tree structure into C data
structures as defined by the application layer interface.

Estimates of the optimal performance are computed
from Lin’s formulas, taking into account the length
distribution of the encoded fields. As Lin’s formulas give
instruction counts, cycle counts are estimated by
multiplying by the average CPI (cycles per instruction)
reported for the other decoders. Although Lin’s figures
give instruction counts for the SPARC architecture, these
are at least as low as would be possible on the Alpha
architecture. In fact, because Lin’s code presumably
contained many SPARC byte load/store instructions which
require a sequence of two to six instructions on the Alpha,
the optimal results given are somewhat optimistic.

Table 2 compares the performance of the prototype
decoder with Vince [31], a publicly available UNI
signalling implementation, decoding the sample Q.2931
message. Vince uses a table-driven approach to convert

incoming messages into an association list of information
elements used by higher software layers.

As can be seen in Tables 1 and 2, the RTCG prototype
fast decoder ran 4 to 5 times faster than Lin’s optimal
results, and 70 to 100 times faster than the available
implementations. It required between 3.6 and 6.3
instructions per byte of input.

The ISODE decoder for ASN.1 is about twenty times
slower (by instruction count, ignoring SPARC/Alpha
differences) than Lin’s optimal results, requiring 266
instructions per byte of input. This does not reflect badly
on the ISODE implementation; ISODE uses a fairly
flexible decoding strategy that permits easy debugging and
extensive error checking. Some valuable features of
ISODE’s decoder architecture require a separation of the
ASN.1 BER from the data type specification, at the cost of
some performance. It also includes (as does the RTCG
prototype) functionality that Lin’s decoder does not, such
as error checking.

The Vince decoder took 279 instructions per byte of
input, in the same range as the ISODE decoder. About half
the instructions are executed as part of the malloc
function, which required an average of 75 instructions for
each call. (The malloc from the OSF1 3.0 library is used
instead of Vince’s own memory allocation function
because it is significantly faster). Careful optimization
could certainly make Vince faster.

TABLE 1. Performance of ASN.1 Decoders

ISODE
ASN.1 BER
Decoder

Estimates
from Lin’s
Optimal
Results

Prototype
Fast Decoder

101500 inst.
174000 cycles
1.715 CPI
1310 µS

4100 inst.
6264 cycles
1.528 CPI est
47.0 µS

1307 inst.
1338 cycles
1.02 CPI
10.0 µS

TABLE 2. Performance of Q.2931 Decoders

Vince Q.2931
Decoder

Prototype
Fast Decoder

33100 inst.
62100 cycles
1.876 CPI
470 µS

750 inst.
792 cycles
1.171 CPI
6.6 µS

7. Analysis of Message Layout Diversity

The cost of classifying messages using the tree
structure algorithm in the prototype is inexpensive for any
reasonable number of templates. The main limitation to
the level of message layout diversity that the decoder can
support is memory. Each known message layout requires a
decoding sequence (the decoding sequences generated in
the tests in the previous section consumed about 2 KB
each) and several nodes in the decision tree. Thus
commodity workstation technology in a signalling
environment can support on the order of thousands of
message layouts.

In our estimation of normal usage of the ATM Forum
UNI 3.0 specification, analysis shows that for the SETUP
message (the richest message type), on the order of 1043

message layouts are possible, considering elements passed
transparently by network switches to be internally opaque
so that two elements with the same length but different
internal contents do not result in a different message
layout. Use of some extra fields that are defined
syntactically but which currently have no useful semantics
(such as the codeset shift options) could push this number
much higher.

Despite the enormous space of possible messages,
Q.2931 signalling implementations seem to produce a
small number of layouts in actual practice. For instance,
the Sun QCC library (part of the SunATM network adapter
software) defines an API to allow user processes to set up
ATM connections. Normal usage of this API leads to only
one message layout for each of the nine supported
message types (it is possible for user programs to add or
change information elements by directly manipulating the
binary message contents). The IP over ATM system
included with the SunATM adapter produces four more
message layouts. In this environment, the RTCG system
will quickly learn all the message layouts, and provide
uninterrupted fast operation.

In the UNI environment, messages are sent hop-by-
hop. This means that any messages received by a switch
will have been generated by its directly connected
neighbours (few ATM switches have more than 64 ports.)
Thus, the potential number of distinct encoders that an
decoder must deal with is small, and the likely number of
distinct implementations is even smaller.

Designing an encoder to ensure that message layout
diversity is kept to a minimum is not difficult. Certainly a
developer using RTCG-based decoders would design his
encoder in such a way. It might be reasonable to develop a
set of guidelines for encoder developers to ensure
maximum performance with RTCG-based decoders. The
author thinks that adding optional guidelines to a standard
to achieve maximum performance is a much better thing
than developing a new and incompatible standard.

When new parsers must be compiled frequently, the
cost of compiling is an important consideration. In the
research prototype, compiling costs around 150 mS for a
300 instruction decoder (DEC 3000/400). This is not a
slow compiler; compiling the same expressions with GCC
2.7.0 takes 7.4 seconds. However, Engler reports that his
lightweight compiler costs on the order of 300 machine
instructions for every instruction generated [8], which
would require on the order of 1 mS on the same machine.
(Engler’s compiler does not performs many of the
important optimizations performed in the prototype,
however.) The use of lightweight compiler technology
could reduce the potential performance penalty of an
increase in message layout diversity.

8. Design Alternatives

In order to explore the upper limits of message layout
diversity at which run-time specialization is worthwhile,
our prototype uses a custom, fast code generator.
Compiling a new fast decoder takes on the order of a
hundred milliseconds. An alternative to using a custom
code generator would be to write out source code, invoke a
standard compiler, and dynamically link the resulting
object into the executing code. There is adequate support
for this on most UNIX platforms.

This strategy increases the cost of compilation by 20
to 50, both in terms of time and space overhead.
Compilation times using a C compiler such as GCC are
about fifty times longer. The various overheads in
maintaining a dynamically linked code module are tens of
kilobytes rather than the two kilobytes consumed by the
prototype. It might be reasonable to use this strategy in
systems where the total MLD is up to a hundred, whereas
our prototype handles MLDs up to a few thousand. There
may, in fact, be few systems with MLDs in this range - the
majority of systems may not need an integrated code
generator. In real time environments, however, occasional
delays of a hundred milliseconds may be more tolerable
than delays of multiple seconds.

Another possibility is to not require online
management of the set of optimized decoders. A
reasonable architecture might use a conventional decoder
to handle messages for which optimized decoders do not
exist. Based on some kind of traces, an off-line process
could be run occasionally to generate new optimized
decoders. In systems where most of the messages can be
classified into a small number of layouts, but where there
is a potentially large number of occasionally occurring
layouts, this strategy may be superior to always generating
an optimized decoder for unrecognized messages. A
disadvantage is that it requires two separate decoding
engines.

9. Conclusions

The proposed use of RTCG for message decoding has
both positive and negative impacts on system
performance, complexity, and robustness.

RTCG can lead to tremendous performance gains in
environments with low to moderate message layout
diversity. It achieves this without sacrificing the simplicity,
extensibility, and functionality of the data format
specification code. Performance is 70 to 100 times faster
than some existing decoders, and 4 to 5 times faster than
Lin’s optimal results. This should not be taken as a
criticism of Lin’s results, as they represent an optimum for
all message streams, while RTCG system performs well
only for message streams without high message layout
diversity.

Because the code implementing the encoding rules is
rarely executed, it can be specified in a high-level, flexible
manner, without spending programmer effort to increase
efficiency. This allows the protocol implementation to
closely follow standard layering and structuring
conventions without performance penalty. It also allows
extensive error checking to be done. Frills that would be
impractical if the decoding sequence were in the critical
path can be provided — for example, the prototype
produces a Postscript document diagramming the message
layout. In these respects, it preferable over a decoder
implementation such as Lin’s, which required the high-
level rules specifying the expected data types to be
implemented manually as highly optimized, bit-fiddling
code. This adds a high cost to changing or adding to the
type specification, and probably makes the type
specification hard to decipher by reading the code.

Performance optimization of network code is
frequently done by manually adding fast paths for
common cases of protocol messages. The proposed system
may have advantages over such systems in some
environments. In particular, changes in conventions for
what fields are commonly used may “break” a fast path
implementation, in the sense that some small change in the
implementation of a communicating party may cause a
dramatic performance decrease.

The trade-off between manual and automatic
generation of optimized decoders depends on the amount
of freedom in the message encodings. The carefully
designed formats of TCP and IP headers allow alignments
of message fields to exploited manually, at least on 16- and
32-bit machines. TCP/IP has two degrees of freedom in
the header format: the length of IP options, and the length
of TCP options. The TCP implementation in 4.3BSD was
implemented to be fast only for packets with no IP or TCP
options. TCP/IP performance is, in this sense, fragile with
respect to implementations which make use of these
options. In 4.4BSD, use of the TCP timestamp option

became desirable. Although many possible encodings of
the necessary options are possible within the TCP
specification, only one additional fast path was added for
packets with a particular combination and formatting of
timestamp options specified in RFC1323. Thus, there is
some precedent for guidelines to reduce message layout
diversity.

In richer message formats such as Q.2931, manual
discovery of properties that might allow fast paths appears
impractical. Although with sufficient effort one could
write an optimized decoder that would work for a few
selected message layouts, the system would be hopelessly
fragile with respect to implementation changes or changes
in traffic patterns. Also, the RTCG approach can handle
thousands of message layouts, whereas manual coding of
more than a few would be prohibitive.

The proposed system has a different kind of fragility
which needs to be considered carefully in any application.
In many protocols, it is possible to have an exponentially
large number of message layouts occur in normal
operation. A new extension to a protocol, or an increased
use of optional fields may drastically increase the number
of layouts encountered. This can decrease system
performance by orders of magnitude, as a general parsing,
compilation, and addition to the decision tree would occur
for a large fraction of received messages.

An possible concern is the feasibility of denial-of-
service attacks, performed by sending large numbers of
messages with different layouts to a RTCG-based decoder.
This can be caused by malicious users or by broken
equipment. Such issues are not unique to this system; they
are a concern in any system where processing unusual
messages takes substantially longer than processing
common messages. For the protocols discussed here,
where compiling a new layout requires on the order of a
tenth of a second, an attacker would have to send a fairly
steady stream of messages to deny service to others.
Techniques such as babbler isolation (detecting flurries of
unusual activity from a particular source and rejecting
further messages from the same source for a period of
time) can be used to protect network elements against such
disasters.

The RTCG approach will be used as part of a UNI
signaling implementation being developed to demonstrate
the feasibility of ATM connection setup at performance
levels of 10000 connections per second within the
established UNI signalling framework based on
workstation technology readily available in 1995.
Currently, a few UNI signalling implementations are
available which can handle 50 to 200 connections per
second, but we know of no implementations with much
higher performance. Fast signalling performance will be
important if ATM is to provide acceptable performance for
the sort of data connections that dominate the Internet,

which tend to be short-lived. In the common case, a
network switch must receive four Q.2931 messages for
each setup/teardown. A reasonable total processing budget
is 30 uS for the setup message, and 20 uS each for the
other three messages. On a workstation twice as fast as the
3000/400 (such workstations have been affordable since
mid 1995), the RTCG decoder would require about 10% of
the processing budget. As decoding is only one of many
steps involved in UNI signalling, a slower decoder would
be unacceptable. Clearly, software similar to the Vince or
ISODE decoder falls hopelessly short of our signalling
performance goals. While a highly optimized static
decoder such as described by Lin might meet our
performance goal with somewhat faster processors or
modest levels of parallel processing, the RTCG-based
decoder has a clear advantage.

10. References

More references with abstracts, and online copies of
some of the references below can be seen at http://
www.eecs.harvard.edu/~tlb/references.html
1. Harry R. Lewis, Larry Denenberg. Data Structures and their

Algorithms. 1991, Harper-Collins.
2. David Keppel, Susan J. Eggers, and Robert R. Henry. A case

for runtime code generation. Technical Report 91-11-04,
University of Washington (EECS dept), 1991.

3. J.C. Mogul, R.F. Rashid, and M.J. Accetta. The packet filter:
An efficient mechanism for user-level network code. In Proc.
of the Eleventh ACM Symposium on Operating System Prin-
ciples. 1987

4. R. Pike, B.N. Locanthi, and J.F. Reiser. Hardware/Software
Trade-offs for Bitmap Graphics on the Blit. Software - Prac-
tice and Experience, 15(2):131-151, February 1985.

5. Calton Pu, Henry Massalin, and John Ioannidis. The Synthe-
sis Kernel. Computing Systems, 1(1):11-32, 1988.

6. C. Chambers, D. Ungar, and E. Lee. An Efficient Implemen-
tation of SELF, a Dynamically-Typed Object-Oriented Lan-
guage Based on Prototypes. Proceedings of OOPSLA ‘89.

7. H.A. Lin. Estimation of the Optimal Performance of ASN.1/
BER Transfer Syntax. Computer Communication Review.
23(3), July 1993.

8. D.R. Engler, T.A. Proebsting. DCG: An Efficient, Retargeta-
ble Dynamic Code Generation System. In Sixth Internation
Conference on Architectural Support for Programming Lan-
guages and Operating Systems. 1994.

9. J. Dean, C. Chambers, D. Grove. Selective Specialization for
Object-Oriented Languages. In Proceedings of SIGPLAN
‘95.

10. M. Sample, G. Neufeld. Implementing Efficient Encoders
and Decoders for Network Data Representations. IEEE
INFOCOM ‘93, p 1144.

11. C. Huitema, A. Doghri. Defining faster transfer syntaxes for
the OSI presentation protocol. Computer Communication
Review, vol.19, no.5, p. 44-55. Oct. 1989.

12. A. Cardoso, E. Tovar. Defining more efficient transfer syntax
for application layer PDUs in field bus applications. Com-
puter Communication Review, vol.22, no.3, p. 98-105. July
1992.

13. M. Bassiouni, M. Loper. Performance tests and flexible
decoding for transfer syntax in real-time applications. IEEE
13th Annual International Phoenix Conference on Comput-
ers and Communications, p. 512, 134-40. 1994.

14. M. Besson, A. Doghri, C. Huitema. High performance heter-
ogeneous transmission using the OSI presentation protocol.
Proceedings of the Third International Symposium on Com-
puter and Information Sciences, p. xii+732, 1-12. 1989.

15. M. Bever, U. Schaffer. Coding rules for high speed networks.
IFIP Transactions C (Communication Systems), vol. C-7, p.
119-32. 1992

16. H. Horiuchi, S. Obana, K. Suzuki. Efficient packed encoding
rules (EPER) for ASN.1 and its evaluation. Transactions of
the Information Processing Society of Japan, vol.36, no.2, p.
492-500. Feb. 1995.

17. J.R. Pimentel. Efficient encoding of application layer PDU’s
for fieldbus networks. Computer Communication Review,
vol.18, no.3, p. 14-44. May-June 1988.

18. N. Mitra. Efficient encoding rules for ASN.1-based proto-
cols. AT&T Technical Journal, vol.73, no.3, p. 80-93. May-
June 1994.

19. D. Ghosal, T.V. Lakshamn, Y. Huang. High-speed protocol
processing using parallel architectures. Proceedings IEEE
INFOCOM ‘94, p. 159.

20. M. Bilgic, B. Sarikaya. Performance comparison of ASN.1
encoder/decoders using FTAM. Computer Communications,
vol.16, no.4, p. 229-40. April 1993.

21. D.D. Clark, D.L. Tennenhouse. Architectural considerations
for a new generation of protocols. Computer Communication
Review, vol.20, no.4, p. 200-8. Sept. 1990.

22. R. Macklem. Lessons learned tuning the 4.3 BSD Reno
implementation of the NFS protocol. Proceedings of the Win-
ter 1991 USENIX Conference, p. ix+363, 53-64. 1991.

23. H. Hennessy, D. Patterson. Computer Architecture: A Quan-
titative Approach. 1990, Morgan Kaufmann.

24. The Dragon Book.
25. M.T. Rose, J.P. Onions, C.J. Robbins. The ISO Development

Environment.
26. ATM Forum. ATM User-Network Interface Specification ver-

sion 3.0. 1993, Prentice Hall.
27. ISO standard 8824. Specification of Abstract Syntax Nota-

tion One (ASN.1), 1988.
28. ISO standard 8825. Specification of Basic Encoding Rules

for Abstract Syntax Notation One (ASN.1), 1988.
29. Sun Microsystems. SunATM-155 SBus Cards Manual. 1995.
30. Digital Equipment Corp. DEC 3000 Model 400/400S AXP

Technical Summary. Order number EC-N0093-51.
31. Kaman Sciences Corporation. Vince 1.0: Application Pro-

grammer’s Interface (API) Manual. 1995.
32. A. Srivastava, A. Eustace. ATOM: A system for building cus-

tomized program analysis tools. Proceedings of the SIG-
PLAN ‘94 Conference on Programming Language Design
and Implementation, pp. 196-205, June 1994.

33. P. Hoschka, C. Huitema. Automatic Generation of Optimized
Code for Marshalling Routines. IFIP TC6/WG6.5 Internation
Working Conference on Upper Layer Protocols, Architec-
tures and Applications, Barcelona. Amsterdam: North Hol-
land.

