Speeding up Protocols for Small Messages

Trevor Blackwell

Harvard University
29 Oxford St
Cambridge MA 02138
tlb@eecs.harvard.edu

Abstract

Many techniques have been discovered to improve
performance of bulk data transfer protocols which use large
messages. This paper describes a technique that improves
protocol performance for protocols that use small messages,
such as signalling protocols, by reducing memory system
penalties. Detailed measurements show that for TCP, most
memory system costs are due to poor locality in the protocol
code itself, rather than movement of data. We present a new
technique, analogous to blocked matrix multiplication, for
scheduling layer processing to reduce memory system costs,
and analyze its performance in a synthetic environment.

1 Introduction

As widely available network speeds have increased by
more than an order of magnitude, signalling protocol
performance has not increased nearly as much. Perhaps due
to the ease of benchmarking bulk data transfer protocols (it is
easy to compare Mbits/sec,) considerably more attention has
been paid to data transfer than to signalling performance.

The main way to improve the performance of data
transport protocols is to reduce the number of operations on
the data. Traversing large blocks of data is especially time
consuming on modern processors because when the data
does not fit in the on-chip cache, the processor must wait for
slower external memory.

But data and signalling protocols have very different
characteristics. We think of signalling protocols in the

broadest sense of protocols whose ultimate purpose is not
data transfer. Such protocols are ubiquitous in the Internet:
DNS, ICMP, IGMP, TCP’s connection control messages, all
except two messages in NFS, to name just a few.

We are especially interested in the performance of
Q.93B, the standard ATM connection setup protocol.
Whatever one’s views on the proper place for ATM, it is
clear that it would be useful in more environments if VCs
could be set up as cheaply as, say, TCP connections. A major
obstacle is processing time in the switches. If ATM switches
are deployed like IP routers, than a cross-country connection
might pass through 10 to 20 switches. Several current
signalling implementations spend 5 to 20 milliseconds
processing each message: this could add a large fraction of a
second to the connection setup time across a large network,
and limit the aggregate rate of connection setups through any
switch to 50 to 200 per second. Our performance goal is to
support 10000 pairs of setup/teardown requests per second
with processing latency of 100 microseconds for setup
requests, using just a commodity workstation processor.

In most cases, all the signalling protocols mentioned
above send small message, on the order of a hundred bytes
or less. For these protocols, the cost of reading and writing
messages is not a major bottleneck.

This paper presents measurements to show that even for
TCP, a fairly simple data transport protocol, the volume of
code touched per packet can be much larger than common
cache sizes, and that the processor spends more time loading
protocol code from memory than moving packet contents.
Measurement presented in Section 2 show that in the
common case of bulk data transfer over an internetwork, a
common TCP implementation running on a common RISC
processor spends ten times longer fetching protocol code
from memory than moving message contents to and from
memory.

Appears in ACM SIGCOMM “96.

Sometimes, computations can be restructured to
improve the locality of reference. For instance, matrix
operations can be “blocked” [23] by rearranging loops to
achieve dramatic performance increases. We propose a new
way of scheduling protocol layer processing for small-
message protocols which, like matrix blocking, can
dramatically reduce memory system penalties under heavy
loads.

In this paper, we concentrate on receive-side processing
to simplify the discussion. The techniques presented are also
applicable to transmit-side processing, but we have not
evaluated their performance or considered implementation in
detail for the transmit case.

The rest of Section 1 gives some background on the
impact of memory locality on system performance. Then
section 2 describes detailed measurements of TCP/IP which
demonstrate the large working sets of even simple protocols.
Section 3 describes the central idea of this paper: locality-
driven layer processing (LDLP). Section 4 analyzes the
performance of LDLP in a synthetic system. Section 5
describes other ways to improve locality in protocol stacks,
and section 6 concludes.

1.1 Performance of Data Transport Protocols

A naive layered protocol implementation might copy
message payloads at every layer. But for a long time,
protocol implementors have utilized buffer management
schemes that allow common operations such as stripping
headers and concatenating fragments to be done without
copying any message contents. The mbuf system of 4.2BSD
[2] is perhaps the canonical example; the x-kernel [18]
supports a more powerful scheme.

Much research has focussed on integrating repetitive
operations on message data. Integrated layer processing
(ILP) [7] tries to reduce data movement by loading each byte
of a message once, and performing the operations for
multiple layers on it, rather than reloading and possibly
storing the message contents for each layer.

The principle of Application Level Framing [7]
encourages applications to transfer data in units that can
remain intact through many layers of the protocol stack. It
reduces the amount of queuing that must occur between
layers, allows each message to stay in the data cache during
its entire trip through the protocol stack, and facilitates
implementation of ILP.

For protocols that do simple processing on large
messages, moving message contents into and out of the
processor is usually a major bottleneck, and thus techniques
to reduce data movement have been shown to give significant

performance benefits when protocols use message sizes of a
few kilobytes or more. Druschel’s thesis [16] gives a good
description of ILP, copy elimination, ALF, and other
techniques to reduce data movement costs.

1.2 Memory System Performance

Modern RISC CPUs achieve high performance with the
help of on-chip caches which, for many workloads, can
satisfy a large fraction of data and instruction references
without incurring the delay inherent in accessing memory
separate from the CPU. Software performance depends on
both the number of instruction execution cycles and the
number of cycles spent waiting for memory.

Ousterhout [11] showed in 1990 that largely because of
memory system stalls due to poor locality of reference,
kernel code had benefited little from several years of
processor performance improvement which made an order of
magnitude improvement in a large class of other
applications. Architectural decisions have been shown to
have a large impact on system performance because of
memory system effects, even when the number of
instructions executed does not change significantly [13, 12].
It is clear that locality needs to be treated as an important and
fundamental property of system designs.

Currently, several systems with fast CPU clock rates,
small primary caches of 8 or 16 KB, and substantial CPU/
memory bandwidth mismatches have good overall price/
performance ratios. For example, the DECStation 3000/400
[24] comes with an 8KB primary instruction cache, and
wastes 20 instruction slots (10 cycles) due to a primary
instruction cache miss that hits in the secondary cache. This
processor uses 32-byte cache lines, which means that data is
fetched from memory in units of 32 bytes. Rosenblum [19]
predicts that some high-performance processors will have 64
KB caches by 1998, but that the number of instruction slots
wasted due to a primary instruction cache miss will climb to
60.

All the results presented here are measured or simulated
for the DEC 3000/400. We think the principles apply to any
machine with small primary caches.

2 Measurements of TCP/IP

Much work has already been done on optimizing the
BSD-derived TCP/IP system [2], and it is not particularly a
goal of this paper to suggest ways to improve it. Rather,
measurements are given for the implementation of TCP in
4 4BSD because although it represents a mature and well-
tuned implementation of a fairly lightweight protocol, the
working set sizes are surprisingly large. One might expect
that most memory system costs would be due to movement

of the data being transported. However, our measurements
show that message contents count for less than 10% of the
memory system traffic for the common case of large data
transfers over an internetwork.

To aid in the discussion of locality in protocol
implementations, we define a few terms:

Data Loop. The loop performed at one protocol layer
(or once for multiple layers with ILP) iterating over the
message contents.

Working Set. The subset of code and read-only data for
the entire protocol stack that is referenced in the receive
path. Code and read-only data are deliberately merged
because they contribute similarly to memory bandwidth
usage, and because programmers and compilers are often
free to trade between the two.

Measurements were taken from a trace of a TCP socket
receiving a message, delivering the contents to the
application, and sending an acknowledgment as detailed in
Table 2. Note that this TCP implementation sends an ACK
for every second data packet; thus the measurements
presented are for the larger of two common cases of
receiving a packet. Figure 1 shows a map of the working set.

2.1 System Description

We measured the TCP implementation of NetBSD/
Alpha (based on 4.4BSD Lite) as of September 1995, with
locally optimized versions of a few routines, configured for
minimal error checking in the kernel, and compiled with full
optimization. It runs on a DEC 3000/400 (“Alpha”), using
the Lance Ethernet driver. TCP’s timestamp-related features
[1] are not enabled.

We think the working set size of this implementation is
typical of BSD-derived TCP/IP stacks on RISC
workstations. Common causes of large code size, such as
function inlining, are not done. Primary cache lines are 32
bytes: a reference to any element in the cache line makes the
whole cache line part of the working set. The large cache
line size does affect the working set sizes, especially for
read-only data which tends to be sparse. With 16-byte cache
lines, the working sets for code and read-only data would be
13% and 31% smaller. Section 5.3 discusses the effect of
cache line sizes in detail.

The 64-bit register size of the Alpha does not increase
the working set sizes very much over a 32-bit machine.
Although many data structures are larger for 64-bit
machines, few such data structures are counted in the read-
only data. Individual 64-bit pointers are common; however
these require exactly one cache line on either a 32- or 64-bit
machine. Long code sequences to generate 64-bit constants

do not occur often enough to contribute significantly to the
code size.

2.2 Tracing Apparatus

Tracing was done under NetBSD by simulating
instructions and recording all memory references to a trace
buffer for later analysis. A special function
alphasim entry was added to the kernel to invoke the
tracing apparatus. Rather than returning like a normal
function, the simulator creates a new temporary stack for its
own use, and starts simulating instructions starting from the
instruction after the call to alphasim entry. All
memory references are logged to a trace buffer, which can be
read by a user process. Calls were added at the system call,
context switch, and hardware interrupt entry points. A flag
controls whether or not the tracing system is enabled. The
kernel runs normally when tracing is disabled, and runs
about 20 times slower when it is enabled. In some ways, this
system is more convenient than code modification systems
such as ATOM [15], which cause the traceable code to run
slowly whether or not traces are actually being collected.

The tracing system can handle nearly all Alpha
instructions. When it encounters an instruction that it can’t
handle, it stops tracing and jumps back to the original code.
The only such instructions occurring in the traces were the
special instructions which return from an interrupt or system
call; these were logical endpoints for the individual traces.

The simulator was validated by linking it into the
compiling pass of the GCC compiler and compiling several
large programs, and also by running a variety of programs on
an instrumented kernel with tracing enabled. Except for the
slowdown, no differences were noted.

Several programs were used to combine and analyze the
individual traces. We experimented with several formats for
visualizing the traces in addition to the format used for
Figure 1. As the tracing system can also produce a procedure
call graph, it has also been generally useful in understanding
control flow in the kernel

One reason for choosing the Alpha processor for the
experiments was the relative ease of writing an instruction
set simulator. The whole instruction simulation and tracing
apparatus was less than 1000 lines of C and assembler.

To validate the results, similar measurements were made
using an entirely different system. The ATOM code
modification system [15] was used to modify the Digital
Unix 3.0 kernel to record a trace of its memory references.
Results were similar: Digital Unix’s working set had about
30% less code, and a similar amount of data. The smaller
code size is partly due to some linker optimizations that

simplify nonlocal procedure calls, and partly because
Digital’s implementation is better tuned for the Alpha. Both
these sets of results miss some contributions to the working
set due to PAL code, an Alpha-specific architectural feature
which implements certain low-level functions such as
switching between user and system mode, and managing the
translation lookaside buffer (TLB). We do not currently have
access to the PAL code.

2.3 Trace Collection

Measurements were done with a program which:
* opened a socket to a process on another machine which
wrote data continuously
* enabled tracing
* received several TCP segments
* disabled tracing

The trace buffer was then dumped to a file and analyzed.

24 Results

Working Set Sizes
Description Code |Read-only| Mutable
Data Data

Device 4480 864 672

Ethernet 2784 480 128

Protocol 1P 3168 448 160
Layers TCP 5536 544 448
Socket low 608 32 160

Socket high 1184 256 64

Over- Kernel entry/exit 2208 1280 640
head Process control 5472 544 736
Common Buffer mgmt 1632 192 512
Copy, checksum 3232 448 128

Total 30592 5088 3648

TABLE 1. Breakdown of Working Set Sizes in NetBSD
TCP Receive & Acknowledge Path. No accesses to
packet contents, mutable data structures, hardware
registers, or the stack are counted. Unit of memory is a
32-byte cache line. Data is considered read-only if it was
not modified during the trace. Code is classified into
layers based on its function; data is classified based on
the function executing when it was first accessed during
the trace.

Table 1 shows the breakdown of working set
contributions for the various parts of the protocol stack,
based on a detailed classification of memory references. In
total, about 30 KB of code and 5 KB of read-only data is

— | D in_cksum 1104
sysoall 1176 <
trap 2008
mlcrotslmlg 288 g — setrunqueue 176
— = do_sir 200

netintr 344 <=

lestart 1824 Q

copyfrombuf_gap2 240
Zerobuf_gap16 184 —

= interrupt 184

leintr 3264

= copytobuf_gap2 256

= copyfrombuf_gap16 208
copftuf aple 28— =SSa 5T
B = > tc_3000_500_iointr 848
tcp_ustreq 2352 Q —_—
==
I [icp_output 4872
—
tep_input 11872
|
—
|
ip_output 5120
—
|
—
ipintr 2648 Q —
F— s = in_broadcast 288
arpresolve 944 <] —
—
ether_input 2728
=
ether_output 3632
—
—] [sbcompress 704
sbappend 160 —= i
sbwait 160 — — == sowakeup 360
T— soreceive 5536
m_adj 376 == — —
selwakeup 456 <= — — rsggat,;azd 80
mi_switch 520 =1 s — B wakeup 488
—
tsleep 1096 < = —_—
S = UiOMove 424
free 856 < f—e]
_____]
ntohl 64 p— D malloc 1608
copyout 132 — =%
7 S > Cpu_switch 460
Xontint 208 === 0 — XeniSys 148
al_swpipl 8 — T—
pal_swpip entry | pktintr | exit

FIGURE 1. Plot of Active Code for TCP Receive &
Acknowledge Path. Vertical axis is memory address in
code segment, divided into functions. The three columns
are the phases of the trace: process making read call and
being blocked; device interrupt and adding payload to
socket buffer; process waking up, copying data into
process memory, and sending ACK. Numbers beside
function names give the total size of the function in bytes;
only the bytes actually touched are counted in Table 1.

Entry || Process makes read system call. Call is dis-
patched to socket layer. No data is available
in socket receive buffer, so process sleeps.

Device || Message arrives on Ethernet, and triggers
Interrupt || device interrupt. An mbuf is allocated, the
message is copied from device memory into
the mbufs, and the mbuf is placed on a
received message queue. As soon as the
interrupt returns, further processing happens
at a lower interrupt level. The message is vec-
tored through the IP layer, which does very
little because the message is addressed to the
host and is not a fragment, and then to TCP.
TCP is able to use its fastpath, and the single-
entry PCB cache hits. It computes the check-
sum for the message, updates sequence num-
ber and timer fields in the PCB, and delivers
the contents to the socket layer. The socket
layer appends the data to the socket receive
buffer and wakes up the sleeping process.

Exit || The process wakes up. The socket layer
checks the receive buffer, finds data, and cop-
ies it into the process’s address space. It calls
the TCP layer to send an ACK, and returns
from the system call.

TABLE 2. Phases of TCP receive & acknowledge path
shown in Figure 1.

touched every time a packet is received and an ACK
generated.

The unit of granularity for all memory references is a
cache line. Code is classified into layers based on its
function. Common functions used by multiple layers, such as
buffer management, data copying, and checksum routines,
are classified separately. The classification of data into layers
is somewhat approximate. Cache lines which contain data
relevant to multiple layers are assigned to whichever layer
referenced them first during the traces.

Clark et al [6] reported measurements of TCP/IP which
showed that the overhead of receiving a message and
sending an acknowledgment (i.e. all but the per-byte costs)
was 639 1386 instructions. Assuming the same number of
Alpha instructions would suffice, 639 distinct instructions on
the Alpha requires only 2556 bytes of code. How can this
number be reconciled with the results above? Clark
eliminated many elements which are included here. His
analysis does not include the socket layer, interrupt
dispatching, system call overhead, process management,
memory allocation, or the device driver. He used a stripped

down buffer management system that would be inadequate
for a general-purpose TCP implementation. His analysis
eliminates not only the per-byte costs of the checksum and
copying routines, but also the fixed overheads of these
routines. Thus Clark’s numbers measure code that
implements only a small fraction of the functionality of the
4 4BSD protocol stack.

On machines with 8 KB caches, the hit rate of TCP will
not be good, as the working set is more than four times larger
than the cache. Few lines will remain in the cache between
successive iterations of the receive & acknowledge path.
Assuming a good cache layout such that conflicts do not
cause cache lines to be loaded more than once per iteration,
about 35 KB of code and read-only data is fetched and
discarded from off the CPU. The message contents (between
512 and 584 bytes depending on the layer) are fetched twice
into the primary cache and stored twice for an off-CPU IO
volume of 2.2 KB in most cases. Thus it is clear that message
contents are not the main consumer of precious memory
bandwidth.

3 Restructuring for Locality

Figures 2 and 3 show the fundamental idea of
restructuring protocol stacks to improve locality. Figure 3
represents protocol layers as rows in a left-hand matrix, and
messages as columns in a right-hand matrix. Protocol
processing is analogous to matrix operations such as
multiplication, because each layer of the protocol stack must
be applied to each packet. Figure 2 shows the same concepts
in a schematic loop structure.

For useful work to occur, both protocol code and
message contents must be brought together in the processor.
Conventional protocol implementations generally take one
message at a time, and execute the code for all layers it must
pass through in turn, as embodied in the ALF principle.
Integrated layer processing modifies the conventional stack
so that multiple layers are applied to each message
simultaneously, as shown in the middle column in Figure 2.

While processing one message at a time works well
when the working set of all the protocol code fits in the
cache, it results it poor performance when it does not. For
protocols that have small messages and large layer
implementations, it is better to bring the code for a single
layer into the cache, and apply it to several messages. This
can be visualized as bringing the (small) data to the (large)
code, rather than the reverse.

Blocked layer processing generalizes the notion of
optimizing locality in layer processing. Blocking is a well-
known optimization technique for improving the
effectiveness of memory hierarchies when performing

matrix operations. Rather than looping over all rows and all
columns at once, subsets of the rows and columns are taken,
and the innermost loops are confined to these subsets. The
result is increased locality. In the conventional structure any
given layer has been evicted from the cache by the time it is
accessed again. In the blocked structure, layers are used
multiple times before being evicted.

N o !
L2 D O Q\ﬁ
L M
A\
L|p\p \}O
U \)
P1 P2 P1 P2 P1 P2
Conventional ILP Blocked

FIGURE 2. Schematic Loop Structure of Conventional,
ILP, and Blocked Protocol Implementations. Only two
layers (L1, L2) and two messages (P1, P2) are shown, but
the principle applies to many layers and messages. For
each implementation style, the control flow to receive
two messages is shown. Small circles are loops over the
data. Conventional: Each message is processed by each
layer in turn. Outer loop has poor locality. ILP: Each
message is processed by each layer in turn, but loops over
data are integrated. Outer loop has poor locality. For
protocols that do complex data processing, such as
encryption, inner loops may also have poor locality.
Blocked: Multiple messages are processed by each layer
in turn. All loops have good locality. Because more
messages are being processed simultaneously, locality is
reduced for message contents.

3.1 Locality-Driven Layer Processing

Blocked layer processing is an off-line algorithm — that
is, it assumes a preexisting sequence of packets. Protocol
stacks need to be on-line, responding to messages when they
arrive.

A simple way to implement blocked layer processing
would be to wait until, say, 5 messages had arrived, and then
process them using a blocked loop structure. Clearly this is
unacceptable for real protocol stacks, as any message might
have to wait an unbounded amount of time before a complete
block arrives.

A better way is to process batches consisting of all
available message. Assume for simplicity that when
messages arrive, they are buffered in the adaptor hardware.
When the protocol stack is able to accept a new message, it
takes all available messages and processes them in a blocked
pattern. When it is finished, it again looks for new messages.

L4 14 14
L3 L3 L3
12 | [pip2 2 | |P1|p2] 12 | |P1|p2
L1 L1 L1
L4 L4
L3 L3
12 P1]P2; L2 P1|P2]
Ll Ll
L4 L4 L4
L3 L3 L3
12 | [P1p2 12 | [P1P2 12 | |P1|P2
Ll Ll Ll
L4 L4
L3 L3
L2 | [pip2 2 | [p1|p2]
Ll Ll
g
= L4 L4 L4
= L3 L3 3
2 | [P1|P2 L2 | |p1fP2) 12 | |P1|p2
Ll Ll Ll
L4 L4
L3 L3
L2 P1{P2 L2 P1[P2)
Ll Ll
L4 L4 L4
L3 L3 L3
12 | |piP2 12 | |P1P2 12 | |P1p2
Ll Ll Ll
L4 L4
L3 L3
L2 P1{P2 L2 P1|P2]
v L L1
Conventional ILP Blocked

FIGURE 3. Layered Procotol Stacks as Matrices.
Protocol layers (L1, ... L4) are rows in the left matrix;
packets (P1, P2) are columns in the right matrix. The
sequence of computation is shown down the page.
Conventional: Each layer is applied to each message in
turn. ILP: Multiple layers are applied to each message in
turn. LDLP: A subset of layers and messages that will fit
in the cache is chosen, and and each layer in the subset is
applied to each message in the subset in turn.

Under light load, messages will usually be processed singly,
minimizing delay. Under heavy load, messages will be
processed in batches, maximizing throughput. This
algorithm is simple to implement, and the results in the next
section show that it works well — increasing throughput and
decreasing latency at most load levels.

One can roughly categorize protocols as handling large
messages or small messages, according to the relative sizes
of typical messages and protocol code. Figure 4 makes this
distinction slightly more concrete. Large-message protocols
are those where the size of most messages is larger than the
size of the protocol code which is normally referenced for
each message, both measured in terms of the memory they
occupy; small message protocols are the opposite. For large-

L3
L2 Message
L1

~_

Large-Message Protocol

L3 | g
L2

L1

=

Small-Message Protocol

FIGURE 4. Large- and Small- Message Protocols. For
both types, protocol layers are shown superimposed on
the processor’s primary instruction (I) and data (D)
caches. For large-message protocols, the size of a
message is larger than the working set of the protocol
itself; for small-message protocols the working set is
larger than the message. Although separate instruction
and data caches are depicted, the results of the paper hold
equally well for processors with unified caches.

message protocols, one is a good blocking factor, and so a
conventional protocol implementation performs well. It is
small-message protocols which benefit from LDLP.

3.2 Implementation

The optimal blocking factor is hard to estimate. Lam
[22] presents algorithms that can give a fairly accurate
estimate of the optimal blocking factor.

For many signalling protocols, just one layer will fit in
the instruction cache, while several messages fit in the data
cache. For this special case, implementation is especially
simple. Messages are processed in batches consisting of as
many available messages as will fit in the data cache.

In protocol stack implementations where there is a
queue between adjacent layers and each layer is
implemented as a separate task, implementing LDLP is a
simple matter of task scheduling. Higher layers are given
higher priorities, but all layers run to completion — that is,
they process all the messages in their input queue. The
lowest layer, however, is made to yield the CPU after
processing as many messages as will fit in the data cache.

For protocol stacks which pass messages between layers
with just a procedure call and no intervening queue, the entry

point to each layer is modified to append the message to a
queue of messages to be processed for that layer, and then
return. When a layer is invoked, it pulls messages off its
queue, making calls as usual to the next layer to propagate
messages upward, until the queue is exhausted. Then, it
invokes all layers that can be directly above it (there can be
more than one) to process the messages in their queues.
Some informal experiments suggest that enqueuing and
dequeuing messages costs on the order of 40 instructions.

This scheme requires a buffer management scheme
where lower layers hand off their buffers to the higher layers,
and don’t destroy them after calling the upper layers. The
4 ABSD mbuf system works well.

4 LDLP Performance Results

This section presents a synthetic benchmark which
shows how LDLP can increase throughput by increasing
locality. As batching can have the effect of delaying packets,
we present mainly latency results. The results show that
while latency increases slightly for a small range of input
loads, the increased throughput decreases latency by
reducing queuing at most load levels.

The synthetic benchmark simulates receiving messages
through a five-layer protocol stack. Although few stacks
implement five layers of the OSI reference model, “layer”
need not directly correspond to an OSI layer. For instance,
six candidate layers are shown in Figure 1.

The synthetic benchmark simulates a good cache layout
for each individual layer. That is, within each layer, there are
no self-conflicts. Such a good layout is probably feasible
with commonly available tools such as Cord [14]. Large
numbers of cache conflicts within a layer would tend to
reduce the relative benefit of LDLP along with overall
performance.

Measurements are shown for 8 KB direct mapped
instruction and data caches. Because the caches are not fully
associative, the number of conflict misses depends on the
way the program is laid out in memory. To insulate the
results from the vagaries of layout effects, average results are
presented from 100 runs, each with a different random
placement in memory. Since each run lasted one second, the
results for each arrival rate cover 100 seconds of simulated
time.

The processor runs at 100 MHz, and every read cache
miss causes it to stall for 20 cycles. This miss penalty, higher
than that of the DEC 3000/400 used for results in Section 2,
is used to emphasize the effects of locality. Some processors
can prefetch instructions from the second level cache to hide
some of the cache miss cost, although ultimately the
execution rate is bounded by the second level cache

bandwidth, and possibly by the main memory bandwidth for
very large protocol working sets.

Each layer has 6 KB of code, and 256 bytes of data in its
working set. Each instruction in the working set is executed
at least once, including a 40-instruction loop over the data
with a cost of 0.5 cycles/byte. In total 1652 cycles of
instruction processing are executed for each layer. This
benchmark somewhat overemphasizes the importance of
touching data, as most protocol stacks to not touch all the
data at every layer.

The input to the simulator is a stream of 552-byte
messages (a common packet size in IP internetworks) from a
Poisson traffic source. Figure 5 shows how the number of
cache misses per message decreases at high arrival rates with
LDLP, due to blocking. Figure 6 shows that latency is
improved at almost all arrival rates. In Figure 5, it can be
seen that data cache misses increase at high arrival rates and
batching factors, but that the increased data misses are far
outweighed by the decreased instruction misses.

Conventional

1000 [[[[[[| b
w2
(9]
% 750
=
o 500 | 1
S
& 250
O

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Arrival Rate (msgs/sec)
LDLP

1000
[72]
[
& 750
% 500 \\
S
& 250
@] D

0 I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Arrival Rate (msgs/sec)

FIGURE 5. Cache Misses (Instruction and Data) per
Message as a function of Arrival Rate using a Poisson
traffic source. At high arrival rates, batching increases
data cache misses, but decreases instruction cache
misses. Because the code size is larger than the message
size, the effect of decreased instruction cache misses
dominates. The LDLP curve flattens out beyond 8500
msgs/sec because the level of batching becomes limited
by the maximum batch size.

Because Poisson processes are not representative of
many real-world traffic sources [20], we also used the traces
of Ethernet traffic collected by Leland et al. [21] to drive the
simulation. The first 1000 seconds of the October 5, 1989
trace were used. The packet sizes are taken from the traces,
but all other parameters are the same as for the Poisson
traffic source. Rather than varying the arrival rate (which is

100 ms

Conventional

10 ms LDLP
I
g
k-
=~ 1ms
100 ws 75552000 3000 2000 5000 6000 7000 8000 9000 10000
Arrival Rate (messages/sec)
FIGURE 6. Latency as a function of Arrival Rate using
a Poisson traffic source. Although batching can increase
latency, little batching occurs at low arrival rates, and
improved through